Wednesday, 11 July 2018

IT SECURITY Software testing

Software testing can be conducted as soon as executable software (even if partially complete) exists. The overall approach to software development often determines when and how testing is conducted. For example, in a phased process, most testing occurs after system requirements have been defined and then implemented in testable programs. In contrast, under an agile approach, requirements, programming, and testing are often done concurrently.


The box approach
Software testing methods are traditionally divided into white- and black-box testing. These two approaches are used to describe the point of view that the tester takes when designing test cases.

White-box testing

White-box testing (also known as clear box testing, glass box testing, transparent box testing and structural testing, by seeing the source code) tests internal structures or workings of a program, as opposed to the functionality exposed to the end-user. In white-box testing, an internal perspective of the system, as well as programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the code and determine the appropriate outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit testing (ICT).

While white-box testing can be applied at the unit, integration and system levels of the software testing process, it is usually done at the unit level. It can test paths within a unit, paths between units during integration, and between subsystems during a system–level test. Though this method of test design can uncover many errors or problems, it might not detect unimplemented parts of the specification or missing requirements.
Techniques used in white-box testing include:
API testing – testing of the application using public and private APIs (application programming interfaces)
Code coverage – creating tests to satisfy some criteria of code coverage (e.g., the test designer can create tests to cause all statements in the program to be executed at least once)
Fault injection methods – intentionally introducing faults to gauge the efficacy of testing strategies
Mutation testing methods
Static testing methods
Code coverage tools can evaluate the completeness of a test suite that was created with any method, including black-box testing. This allows the software team to examine parts of a system that are rarely tested and ensures that the most important function points have been tested. Code coverage as a software metric can be reported as a percentage for:
Function coverage, which reports on functions executed
Statement coverage, which reports on the number of lines executed to complete the test
Decision coverage, which reports on whether both the True and the False branch of a given test has been executed
100% statement coverage ensures that all code paths or branches (in terms of control flow) are executed at least once. This is helpful in ensuring correct functionality, but not sufficient since the same code may process different inputs correctly or incorrectly.
Black-box testing

Black box diagram
Black-box testing treats the software as a "black box", examining functionality without any knowledge of internal implementation, without seeing the source code. The testers are only aware of what the software is supposed to do, not how it does it.[15] Black-box testing methods include: equivalence partitioning, boundary value analysis, all-pairs testing, state transition tables, decision table testing, fuzz testing, model-based testing, use case testing, exploratory testing, and specification-based testing.
Specification-based testing aims to test the functionality of software according to the applicable requirements.[16] This level of testing usually requires thorough test cases to be provided to the tester, who then can simply verify that for a given input, the output value (or behavior), either "is" or "is not" the same as the expected value specified in the test case. Test cases are built around specifications and requirements, i.e., what the application is supposed to do. It uses external descriptions of the software, including specifications, requirements, and designs to derive test cases. These tests can be functional or non-functional, though usually functional.
Specification-based testing may be necessary to assure correct functionality, but it is insufficient to guard against complex or high-risk situations.
One advantage of the black box technique is that no programming knowledge is required. Whatever biases the programmers may have had, the tester likely has a different set and may emphasize different areas of functionality. On the other hand, black-box testing has been said to be "like a walk in a dark labyrinth without a flashlight." Because they do not examine the source code, there are situations when a tester writes many test cases to check something that could have been tested by only one test case or leaves some parts of the program untested.
This method of test can be applied to all levels of software testing: unit, integration, system and acceptance. It typically comprises most if not all testing at higher levels, but can also dominate unit testing as well.
Visual testing
The aim of visual testing is to provide developers with the ability to examine what was happening at the point of software failure by presenting the data in such a way that the developer can easily find the information she or he requires, and the information is expressed clearly.
At the core of visual testing is the idea that showing someone a problem (or a test failure), rather than just describing it, greatly increases clarity and understanding. Visual testing, therefore, requires the recording of the entire test process – capturing everything that occurs on the test system in video format. Output videos are supplemented by real-time tester input via picture-in-a-picture webcam and audio commentary from microphones.
Visual testing provides a number of advantages. The quality of communication is increased drastically because testers can show the problem (and the events leading up to it) to the developer as opposed to just describing it and the need to replicate test failures will cease to exist in many cases. The developer will have all the evidence he or she requires of a test failure and can instead focus on the cause of the fault and how it should be fixed.
Visual testing is particularly well-suited for environments that deploy agile methods in their development of software since agile methods require greater communication between testers and developers and collaboration within small teams.
Ad hoc testing and exploratory testing are important methodologies for checking software integrity, because they require less preparation time to implement, while the important bugs can be found quickly. In ad-hoc testing, where testing takes place in an improvised, impromptu way, the ability of a test tool to visually record everything that occurs on a system becomes very important in order to document the steps taken to uncover the bug.
Visual testing is gathering recognition in customer acceptance and usability testing, because the test can be used by many individuals involved in the development process. For the customer, it becomes easy to provide detailed bug reports and feedback, and for program users, visual testing can record user actions on screen, as well as their voice and image, to provide a complete picture at the time of software failure for the developers.

Grey-box testing
Grey-box testing (American spelling: gray-box testing) involves having knowledge of internal data structures and algorithms for purposes of designing tests while executing those tests at the user, or black-box level. The tester is not required to have full access to the software's source code. Manipulating input data and formatting output do not qualify as grey-box, as the input and output are clearly outside of the "black box" that we are calling the system under test. This distinction is particularly important when conducting integration testing between two modules of code written by two different developers, where only the interfaces are exposed for the test.
However, tests that require modifying a back-end data repository such as a database or a log file does qualify as grey-box, as the user would not normally be able to change the data repository in normal production operations.Grey-box testing may also include reverse engineering to determine, for instance, boundary values or error messages.
By knowing the underlying concepts of how the software works, the tester makes better-informed testing choices while testing the software from outside. Typically, a grey-box tester will be permitted to set up an isolated testing environment with activities such as seeding a database. The tester can observe the state of the product being tested after performing certain actions such as executing SQL statements against the database and then executing queries to ensure that the expected changes have been reflected. Grey-box testing implements intelligent test scenarios, based on limited information. This will particularly apply to data type handling, exception handling, and so on.
Testing levels

There are generally four recognized levels of tests: unit testing, integration testing, component interface testing, and system testing. Tests are frequently grouped by where they are added in the software development process, or by the level of specificity of the test. The main levels during the development process as defined by the SWEBOKguide are unit-, integration-, and system testing that is distinguished by the test target without implying a specific process model. Other test levels are classified by the testing objective.
There are two different levels of tests from the perspective of customers: low-level testing (LLT) and high-level testing (HLT). LLT is a group of tests for different level components of software application or product. HLT is a group of tests for the whole software application or product.
Unit testing
Unit testing refers to tests that verify the functionality of a specific section of code, usually at the function level. In an object-oriented environment, this is usually at the class level, and the minimal unit tests include the constructors and destructors.[23]
These types of tests are usually written by developers as they work on code (white-box style), to ensure that the specific function is working as expected. One function might have multiple tests, to catch corner cases or other branches in the code. Unit testing alone cannot verify the functionality of a piece of software, but rather is used to ensure that the building blocks of the software work independently from each other.
Unit testing is a software development process that involves a synchronized application of a broad spectrum of defect prevention and detection strategies in order to reduce software development risks, time, and costs. It is performed by the software developer or engineer during the construction phase of the software development lifecycle. Unit testing aims to eliminate construction errors before code is promoted to additional testing; this strategy is intended to increase the quality of the resulting software as well as the efficiency of the overall development process.
Depending on the organization's expectations for software development, unit testing might include static code analysis, data-flow analysis, metrics analysis, peer code reviews, code coverage analysis and other software testing practices.
Integration testing
Integration testing is any type of software testing that seeks to verify the interfaces between components against a software design. Software components may be integrated in an iterative way or all together ("big bang"). Normally the former is considered a better practice since it allows interface issues to be located more quickly and fixed.
Integration testing works to expose defects in the interfaces and interaction between integrated components (modules). Progressively larger groups of tested software components corresponding to elements of the architectural design are integrated and tested until the software works as a system.
Component interface testing
The practice of component interface testing can be used to check the handling of data passed between various units, or subsystem components, beyond full integration testing between those units.[ The data being passed can be considered as "message packets" and the range or data types can be checked, for data generated from one unit, and tested for validity before being passed into another unit. One option for interface testing is to keep a separate log file of data items being passed, often with a timestamp logged to allow analysis of thousands of cases of data passed between units for days or weeks. Tests can include checking the handling of some extreme data values while other interface variables are passed as normal values.[ Unusual data values in an interface can help explain unexpected performance in the next unit. Component interface testing is a variation of black-box testing,[with the focus on the data values beyond just the related actions of a subsystem component.
System testing
System testing tests a completely integrated system to verify that the system meets its requirements.For example, a system test might involve testing a logon interface, then creating and editing an entry, plus sending or printing results, followed by summary processing or deletion (or archiving) of entries, then logoff.
Operational acceptance testing
Operational acceptance is used to conduct operational readiness (pre-release) of a product, service or system as part of a quality management system. OAT is a common type of non-functional software testing, used mainly in software development and software maintenance projects. This type of testing focuses on the operational readiness of the system to be supported, or to become part of the production environment. Hence, it is also known as operational readiness testing (ORT) or Operations readiness and assurance (OR&A) testing. Functional testing within OAT is limited to those tests that are required to verify the non-functional aspects of the system.


In addition, the software testing should ensure that the portability of the system, as well as working as expected, does not also damage or partially corrupt its operating environment or cause other processes within that environment to become inoperative.

Acceptance testing
Acceptance testing can mean one of two things:
1.A smoke test is used as a build acceptance test prior to further testing, e.g., before integration or regression.
1.Acceptance testing performed by the customer, often in their lab environment on their own hardware, is known as user acceptance testing (UAT). Acceptance testing may be performed as part of the hand-off process between any two phases of development.
Alpha testing
Alpha testing is simulated or actual operational testing by potential users/customers or an independent test team at the developers' site. Alpha testing is often employed for off-the-shelf software as a form of internal acceptance testing before the software goes to beta testing.[
Beta testing
Beta testing comes after alpha testing and can be considered a form of external user acceptance testing. Versions of the software, known as beta versions, are released to a limited audience outside of the programming team known as beta testers. The software is released to groups of people so that further testing can ensure the product has few faults or bugs. Beta versions can be made available to the open public to increase the feedback field to a maximal number of future users and to deliver value earlier, for an extended or even indefinite period of time

Development testing
Development Testing is a software development process that involves the synchronized application of a broad spectrum of defect prevention and detection strategies in order to reduce software development risks, time, and costs. It is performed by the software developer or engineer during the construction phase of the software development lifecycle. Development Testing aims to eliminate construction errors before code is promoted to other testing; this strategy is intended to increase the quality of the resulting software as well as the efficiency of the overall development process.
Depending on the organization's expectations for software development, Development Testing might include static code analysis, data flow analysis, metrics analysis, peer code reviews, unit testing, code coverage analysis, traceability, and other software testing practices.
A/B testing
A/B testing is a method of running a controlled experiment to determine if a proposed change is more effective than the current approach. Customers are routed to either a current version (control) of a feature, or to a modified version (treatment) and data is collected to determine which version is better at achieving the desired outcome.
Concurrent testing
In concurrent testing, the focus is on the performance while continuously running with normal input and under normal operational conditions, as opposed to stress testing, or fuzz testing. Memory leak, as well as basic faults are easier to find with this method.
Conformance testing or type testing
In software testing, conformance testing verifies that a product performs according to its specified standards. Compilers, for instance, are extensively tested to determine whether they meet the recognized standard for that language.

2 comments:

  1. Great Article… I love to read your qa and testing services articles because your writing style is too good, its is very helpful for all of us and I never get bored while reading your article because, they are becomes a more and more interesting from the starting lines until the end.

    ReplyDelete
  2. Thank you so much for sharing all this wonderful info

    Business loans in Mundra

    ReplyDelete