Introduction:
Information and the knowledge based on it have increasingly become recognized as ‘information assets’, which are vital enablers of business operations. Hence, they require organizations to provide adequate levels of protection. For banks, as purveyors of money in physical form or in bits and bytes, reliable information is even more critical and hence information security is a vital area of concern.
Robust information is at the heart of risk management processes in a bank. Inadequate data quality is likely to induce errors in decision making. Data quality requires building processes, procedures and disciplines for managing information and ensuring its integrity, accuracy, completeness and timeliness. The fundamental attributes supporting data quality should include accuracy, integrity, consistency, completeness, validity, timeliness, accessibility, usability and auditability. The data quality provided by various applications depends on the quality and integrity of the data upon which that information is built. Entities that treat information as a critical organizational asset are in a better position to manage it proactively.
Information security not only deals with information in various channels like spoken, written, printed, electronic or any other medium but also information handling in terms of creation, viewing, transportation, storage or destruction .This is in contrast to IT security which is mainly concerned with security of information within the boundaries of the network infrastructure technology domain. From an information security perspective, the nature and type of compromise is not as material as the fact that security has been breached.
To achieve effective information security governance, bank management must establish and maintain a framework to guide the development and maintenance of a comprehensive information security programme.
Basic Principles of Information Security:
For over twenty years, information security has held confidentiality, integrity and availability (known as the CIA triad) to be the core principles. There is continuous debate about extending this classic trio. Other principles such as Authenticity, Non-repudiation and accountability are also now becoming key considerations for practical security installations.
Confidentiality: Confidentiality is the term used to prevent the disclosure of information to unauthorized individuals or systems. For example, a credit card transaction on the Internet requires the credit card number to be transmitted from the buyer to the merchant and from the merchant to a transaction processing network. The system attempts to enforce confidentiality by encrypting the card number during transmission, by limiting the places where it might appear (in databases, log files, backups, printed receipts, and so on), and by restricting access to the places where it is stored. If an unauthorized party obtains the card number in any way, a breach of confidentiality has occurred. Breaches of confidentiality take many forms like Hacking, Phishing, Vishing, Email-spoofing, SMS spoofing, and sending malicious code through email or Bot Networks, as discussed earlier.
Integrity: In information security, integrity means that data cannot be modified without authorization. This is not the same thing as referential integrity in databases.
Integrity is violated when an employee accidentally or with malicious intent deletes important data files, when he/she is able to modify his own salary in a payroll database, when an employee uses programmes and deducts small amounts of money from all customer accounts and adds it to his/her own account (also called salami technique), when an unauthorized user vandalizes a web site, and so on.
On a larger scale, if an automated process is not written and tested correctly, bulk updates to a database could alter data in an incorrect way, leaving the integrity of the data compromised. Information security professionals are tasked with finding ways to implement controls that prevent errors of integrity.
Availability: For any information system to serve its purpose, the information must be available when it is needed. This means that the computing systems used to store and process the information, the security controls used to protect it, and the communication channels used to access it must be functioning correctly. High availability systems aim to remain available at all times, preventing service disruptions due to power outages, hardware failures, and system upgrades. Ensuring availability also involves preventing denial-of-service (DoS) and distributed denial-of service (DDoS) attacks.
Authenticity: In computing, e-business and information security it is necessary to ensure that the data, transactions, communications or documents (electronic or physical) are genuine. It is also important for authenticity to validate that both parties involved are who they claim they are.
Non-repudiation: In law, non-repudiation implies one's intention to fulfill one’s obligations under a contract / transaction. It also implies that a party to a transaction cannot deny having received or having sent an electronic record. Electronic commerce uses technology such as digital signatures and encryption to establish authenticity and non-repudiation.
In addition to the above, there are other security-related concepts and principles when designing a security policy and deploying a security solution. They include identification, authorization, accountability, and auditing.
Identification: Identification is the process by which a subject professes an identity and accountability is initiated. A subject must provide an identity to a system to start the process of authentication, authorization and accountability. Providing an identity can be typing in a username, swiping a smart card, waving a proximity device, speaking a phrase, or positioning face, hand, or finger for a camera or scanning device. Proving a process ID number also represents the identification process. Without an identity, a system has no way to correlate an authentication factor with the subject.
Authorization: Once a subject is authenticated, access must be authorized. The process of authorization ensures that the requested activity or access to an object is possible given the rights and privileges assigned to the authenticated identity. In most cases, the system evaluates an access control matrix that compares the subject, the object, and the intended activity. If the specific action is allowed, the subject is authorized. Else, the subject is not authorized.
Accountability and auditability: An organization’s security policy can be properly enforced only if accountability is maintained, i.e., security can be maintained only if subjects are held accountable for their actions. Effective accountability relies upon the capability to prove a subject’s identity and track their activities. Accountability is established by linking a human to the activities of an online identity through the
security services and mechanisms of auditing, authorization, authentication, and identification. Thus, human accountability is ultimately dependent on the strength of the authentication process. Without a reasonably strong authentication process, there is doubt that the correct human associated with a specific user account was the actual entity controlling that user account when an undesired action took place.