CAIIB-RETAIL BANKING-Re-Collected Questions from Previous
Exams - June 2014
1. Calculate Min. Amt. Due for dues of credit card
Finance Charges - Applicable in the event of the card member deposits part of the Total
Payment or the Minimum Amount Due. The amount attracts finance charges on entire
outstanding including fresh purchases and other bank charges till the date of full and
final payment.
Finance charges are calculated on a daily basis at the end of every day based on the
current outstanding balance of the customer.
Illustration:
• Balance outstanding as on the statement date - Rs.20000
• Balance is not paid on the due date.
• Interest - 3.5% per month
• Daily Interest Charge for the above balance is
= 20000 x (3.5% x 12 months)/365 = Rs.23.01
• Total interest payable by the next statement cycle (after 30 days)
= Rs.23.01 x 30 = Rs.690.41 + Service Tax
(ii) Minimum Amount Due - Minimum Amount Due (MAD) is calculated by adding New
Debits for the month, previously unpaid payments and other charges. Minimum amount
also includes the amount by which the card holder exceeded the card limit.
Minimum Amount Due every month shall be higher of the following:
(a) 5% of the statement outstanding or
(b) Sum total of all installments billed, interest, fees, other charges, amount that is over
limit and 1 % of the principal or
(c) Rs.250/-. In case of default or if the statement balance is less than Rs.250/-. the
entire outstanding amount has to be paid.
-------------------------------------
2. Documents/Eligibility for Home Loans/other loans - Unit 7 (Go thru book for details)
3. Maslow Theory -....need arises at which level- pg 43 (Go thru book for details)
4. Product Life Cycle - pg 51 (Go thru book for details)
(i) Introduction
(ii) Growth
(iii) Maturity
(iv) Staleness or saturation
(v) Decline
5. Stages in new product development - pg 60 (Go thru book for details)
(i) Generating new product ideas
(ii) Idea screening
(iii) Concept Testing
(iv) Business analysis and Market analysis
(v) Actual product development, test marketing and commercialisation
6. DSA & CRM related ques - pg 149 & 155 (Go thru book for details)
7. Wealth Management - pg 184 & 223 (Go thru Last Minute Revision Page and book for
details)
8. Calculation of EMI - pg 207 (Go thru Last Minute Revision Page and book for details)
9. In PROPAGATE model, what does E stands for ? - pg 218
Banks selling mutual fund schemes should clearly understand the implications mentioned
in the following model called as PROPAGATE
Model for distribution. PROPAGATE model refers to :
P - Product
R - Risk
O - Opportunities (Returns)
P - People
A - Appetite
G - Geography (Place)
A - Attributes
T - Training
E - Education
10. Al types of Mortgage related ques - pg 248 (Go thru Last Minute Revision Page and
book for details)
11. Numerical from Capital Gain - pg 288 (Go thru Last Minute Revision Page and book
for details)
12. Depreciation from WDV Method - pg 304 (Go thru Last Minute Revision Page and
book for details)
13. Age related ques from Reverse Mortgage - pg 308 (Go thru Last Minute Revision
Page and book for details)
14. Which method of Valuation is preferred for agri/urban land? Pg 298 (Go thru Last
Minute Revision Page and book for details)
15. Classification of Business Process Structure in Retail Banking -pg 27 & 28
(i) Horizontally Organised Model
(ii) Vertically Organised Model
(iii) Predominantly Vertically Organised Model
(iv) Predominantly Horizontally Organised Model
CAIIB-RETAIL BANKING-Re-Collected Questions from Previous
Exams - June 2015
I got all these questions collected from our members. I could not go through
and post the answers. I request members to update themselves with the
answers from book, net or other sources. And if possible post the answers for
whichever questions you can get, on our FB group which will mutuaslly help
everyone.
One question from fd above 1 crore
How many neft settlements in a day?
Tax benefit in Home loan
Credit card cycle
NEFT/RTGS max n min limit
Basic diff.b/w rtgs n neft
Benefit of pvt. Banking
Wealth mgmt for corporates
Education loan repayment/defaults
EMI
Income tax
Rule 72
Essence of crm
Bharat bill paymnt systm
Priority of charge in mortgage
Brown label atm
Purpose of securitisation
Conditions for pension fund mgmt
Mutual fund conditions for bank
Approval for insurance
Propagate model
7Ps
ATM transactions in metro cities
SARFAESI
DRT
internet banking
Mobile banking
Full form of CDO
Product meaning??
Airline company used which model..SBU..INTEGRATED MODEL???
RUPAY card is issued by NPCI
Case study related to Internet banking 5 questions
Case study related to credit card charges and other
Register mortgage date and deposit of title deed
Implementation model related
WRBR.. Full form??
Date of execution of documents.. 4 months
Augmented product...
Expected product...
Under NEFT, number of settlement on week days are..12
RTGS minimum and maximum amout...
Disadvantages of Retail banking...
Mobile banking maximum amout per txn and monthly threshold related 5 questions
IFSC CODE TOTAL ALPHA..and numerics
SFMS
1) Internet Banking- strategy adaptation
2) Depreciation by both methods
3) Capital gain
4) Annuity
5) FSI Calculations
1. 2 Case studies on priority charge on mortgage
2. Problem on depreciation(By WDV)... eg. Wht will be the book value after 3 years?
3. Calculating future value
4. Diff between NEFT and RTGS
5. Questions on DSA
6. Case study on tax exemptions ( both interest and principal repayment)?
7. Prob on Depriciation by straight through method?
8. Wht does securitisation means?
9. Risk involved with DSA?
10. Questions on Potential product PROPAGATE?
11. EMI Calculation
12. Questions on vertical, horizantal model
13. How Many NEFT settlement on weekdays and saturday
14. How many characters in UTR?
15. Question on WRBR
16. Case study on education loan... all the fig are given ( eg. Hostel fee, tution fee, other
expenses and bank margin).... we have to calculate max permissible bank loan
17. One critical case study on credit card... credit card limt, free int period, int rate, over
limit penalty, due date and purchase date are given...
We have to calculate int chraged
a. if the customer pays the amt due after 18 days from due date
b. If he pays half amt before due date then calculate int charged for remaining amt on a
particular date?
C. If the amt crosses the limit then calculate the amt he has to pay
18. If we allow overdraft in CC a/c and the customer does not repay it, then can we
approach DRT ? There are four options and we have to choose the correct one
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
EMI CALCULATION FORMULA
EMI= P x r x (1 + r)^n / ((1+r)^n -1)
Here
p = principal amount (loan taken)
r = interest rate per month (ex: if interest rate per annum is 10% then 10/(12*100))
n= tenure in months
...............................................
EMI examples,
If the Loan taken = 1,00,000 at the rate of 12% interest for the period of 2 Years. Then,
EMI will be,
p = Loan taken = 1,00,000
r = interest rate per month = 1% = 0.01
n= tenure in months = 2 Years = 24 months
EMI
= 100000*0.01*(1+0.01)^24 /((1+0.01)^24 -1)
= Rs. 4707
...............................................
If the Loan taken Rs 1 Lakh at 11 percent per annum, repayable in 15 years, the EMI will
be :
Here,
p = Loan taken = 1,00,000
r = interest rate per month = 0.11/12 = 0.00916
n = tenure in months = 15 Years = 180 months
EMI
= (100000 x .00916) x ((1+.00916)^180 ) / ([(1+.00916)^180] – 1)
= 916 X (5.161846 / 4.161846)
= Rs. 1,136
...............................................
Calculate the EMI for a loan of Rs. 10,00,000 @ interest rate of 9 per cent p.a. for 15
years.
p = Loan taken = Rs. 10,00,000
r = interest rate per month = 0.09/12 = 0.0075
n = tenure in months = 15 years = 180 months
EMI
= ((10,00,000 x 0.0075) x (10.0075)^180) / ([(1+0.0075)^180]-1 )
= Rs. 10,142.67
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Formula to Calculate the Periodic Payments under Reverse Mortgage - RML
The formula to calculate the periodic payments, as available in the website of NHB, is as
under:
Installment Amount = (PV*LTVR*I)/ ((1+I)n-1)
Where, PV = Property Value;
LTVR = LTV Ratio;
n = No. of Installment Payments;
I = the value of I will depend on Disbursement Frequency selected.
Example
Value of the property - Rs. 50,00,000
Loan Amount - 90%
Loan Tenor - 15 years
Rate of interest - 10.50%
Monthly installment - Rs. 10,368
Quarterly installment - Rs. 31,638
Yearly installment - Rs. 1,36,116
...............................................
Reverse Mortgage (RML) Numerical Questions :
Value of the property - Rs. 50,00,000
Loan Amount - 80%
Loan Tenor - 15 years
Rate of interest - 10%
Calculate Monthly Installment
Here,
PV = 5000000
LTVR = 80/100 = 0.8
n = 15 * 12 = 180
I = 10/(12*100) = 10/1200 = 0.008333
= (5000000*0.8*0.008333)/((1+0.008333)^180-1)
= Rs. 9651
So, the Monthly installment = Rs. 9651
...............................................
Reverse Mortgage (RML) Numerical Questions to Calculate Quarterly installment:
Value of the property - Rs. 50,00,000
Loan Amount - 80%
Loan Tenor - 15 years
Rate of interest - 10%
Calculate Quarterly installment
Here,
PV = 5000000
LTVR = 80/100 = 0.8
n = 15 * 4 = 60
I = 10/(4*100) = 10/400 = 0.025
= (5000000*0.8*0.025)/((1+0.025)^60-1)
= Rs. 9651
So, the Quarterly installment = Rs. 29,414
...............................................
Reverse Mortgage (RML) Numerical Questions to Calculate Annual Installment:
Value of the property - Rs. 50,00,000
Loan Amount - 80%
Loan Tenor - 15 years
Rate of interest - 10%
Calculate Annual Installment
Here,
PV = 5000000
LTVR = 80/100 = 0.8
n = 15 = 180
I = 10/100) = 0.1
= (5000000*0.8*0.1)/((1+0.1)^15-1)
= Rs. 125895
So, the Annual installment = Rs. 1,25,895
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
A company wants to set up a sinking fund for the repayment of a loan of Rs. 10 Crores
at the end of four years. It makes equal deposits at the end of each month into a fund
that earns interest at 12% per year compounded monthly. Determine the size of each
deposit.
Also construct a sinking fund schedule(the first three months only).
Solution :
Loan is 10 Crores to be repaid at the end of 4 years.
Monthly deposits are made.
Interest rate is 12% per year compounded monthly.
This is a Payment for a Future Value type problem.
PAYMENT FOR A FUTURE VALUE EQUATION
PMT(FV) = ( FV / (((1+i)^n - 1) / i) )
PMT = Payment per Time Period
FV = Future Value
i = Interest Rate per Time Period
n = Number of Time Periods
FV = Rs. 10,00,00,000
i = 0.12 / 12 = 0.01
n = 12*4 = 48
Intermediate calculations would be:
(1.01)^48 - 1 = 1.612226078 - 1 = 0.612226078
So,
PMT = 10,00,00,000 / (0.612226078/.01) which would become:
PMT = Rs. 16,33,383.54
Also, sinking fund schedule for the first three months are :
End of month 1 = Rs. 16,33,383.54
End of month 2 = Rs. 16,33,383.54 * (1+i) = 16,49,717.378 + p = 32,83,100.92
End of month 3 = Rs. 32,83,100.92 * (1+i) = 33,15,931.929 + p = 49,49,315.47
This may not be so much important for the exam point of view. Still, no harm in getting
familiarised.
........................................................
A company wants to set up a sinking fund for the repayment of a loan of Rs. 10 Crores
at the end of four years. It makes equal deposits at the end of each month into a fund
that earns interest at 12% per year compounded monthly. Determine the size of each
deposit.
Solution :
Loan is 10 Crores to be repaid at the end of 4 years.
Monthly deposits are made.
Interest rate is 12% per year compounded monthly.
This is a Payment for a Future Value type problem.
PAYMENT FOR A FUTURE VALUE EQUATION
PMT(FV) = ( FV / (((1+i)^n - 1) / i) )
PMT = Payment per Time Period
FV = Future Value
i = Interest Rate per Time Period
n = Number of Time Periods
FV = Rs. 10,00,00,000
i = 0.12 / 12 = 0.01
n = 12*4 = 48
Intermediate calculations would be:
(1.01)^48 - 1 = 1.612226078 - 1 = 0.612226078
So,
PMT = 10,00,00,000 / (0.612226078/.01) which would become:
PMT = Rs. 16,33,383.54
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Case Studies on Capital Gains
-----------------------------------
Purchase Price - Rs. 1000000
Year of Purchase - 1995
Sale Price - Rs. 2500000
Year of Sale - 2008
Cost Inflation Index (CII) - Purchase - 281
Cost Inflation Index (CII) - Sale - 582
Calculate
Indexed Purchase Price
Capital Gain
Tax with Indexation (20%)
Tax without Indexation (10%)
capital gain =sale price-(purchase price*(cii sale/cii price))
=2500000-(1000000*(582/281))
=428825.7
Tax without indexation=1500000 × .10
Tax with indexation=428826.6 × .20
...............................................
Long Term Capital Gain
Cost of purchasing a property in April 2007 - Rs 35,00,000
Cost of selling the property in May 2011 - Rs 50,00,000
Inflation Index- 2007-2008 - 551
2011-2012 - 785
Indexed Purchase Cost - 35,00,000 x 785/551= Rs 49,86,388
Long Term Capital Gains = 50,00,000-49,86,388 = Rs 13612*
Tax on LTCG= 13612 x 20%= Rs 2722
Education Cess= 2722 x 3% = Rs 82
Total Tax on LTCG = Rs 2804
*The non-indexed gain would have been Rs 15 lakh
Thus, the indexation benefit reduces the tax liability substantially which otherwise would
have been a huge payout for any investor.
...............................................
This is how short-term capital gains are calculated:
Cost of Equity Mutual Funds units bought in 2011 - Rs 100,000
Price of same units sold after 6 months - Rs 120,000
Short Term Capital Gains - Rs 20,000
Tax Applicable - 20,000 x 15%= Rs 3000
Education Cess - 3000 x 3%=Rs 90
Total Tax payable = Rs 3090
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
An individual took a loan of Rs. 10.00 Lakhs for purchasing a plot of land during F.Y.
2014-15 & has paid around Rs. 1,10,000 towards Interest & around Rs. 57,000 towards
principal during F.Y. 2015-16. He has not made any other contribution under Sections
80C, 80CCC, or 80CCD. He will be able to claim deduction of Rs.......... towards principal.
a. Rs. 1,50,000
b. Rs. 1,10,000
c. Rs. 57,000
d. Rs. 0
Ans - d
No tax benefit is available for purchasing of plot of land.
Ref - Page No 274, 2nd paragraph.
...............................................
Avichal Publishers buy a machine for Rs 20000. The rate of depreciation is 10%. Find the
depreciated value of the machine after 3 years. Also find the amount of depreciation.
What is the average rate of depreciation?
Solution
Original value of machine = Rs 20000,
Rate of depreciation, i = 10%
Hence the book value after 3 years = 20000
= 20000 (0·9)^3
= 20000 (0·729)
= Rs. 14580
Amount of depreciation in 3 years = Rs 20000 - Rs 14580 = Rs 5420
Average rate of depreciation in 3 years
= (5420/20000) x (100/3) = 9·033%
...............................................
Mr X purchased a house property for Rs. 1,00,000 on 31st July 2001. He constructed 1st
Floor in March 2003 for Rs. 1,10,000. The house property was sold for Rs. 5,00,000 on
1st April 2005. The expenses incurred on transfer of asset is Rs. 10,000. Find the capital
gain.
[2000-01-index is 406 and 02-03 index is 447 and 05-06 Index is 497]
(a)2,40,238 (b)2,45,382 (c)2,45,283 (d)2,45,832
500000-10000-(100000x497/406)-(110000x497/447)=24528
Taxable long term capital gain = sales consideration-selling expenses-(indexd cost of
acquisition and improvement)-(Ded under 54 54B D G GA F EC)
...............................................
A capital equipment costing Rs. 200000 today has Rs. 50000 salvage value at the end of
5 yrs. If straight line depreciation method is used, what is the book value of the
equipment at the end of 2 years?
Straight line depreciation for each year = (200000 - 50000)/5 = 30000
So for two years total depreciation = 30000*2=60000
The book value of the equipment at the end of 2 years
= 200000 - 60000
= 140000
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Mr. Raj has bought :
2000 units of a stock at Rs. 20 on 1 Jan 2013,
2000 more units at Rs. 30 on 1 May 2013
2000 more units at Rs. 40 on 1 December 2013
and sold
5000 units at Rs. 50 on 30 December 2014,
Should he go ahead with Indexed Capital Gains Tax or Non Indexed Capital Gains Tax to
save some Tax.
CII for 2012-13 = 852
CII for 2013-14 = 939
CII for 2014-15 = 1024
a. Indexed Capital Gains Tax
b. Non Indexed Capital Gains Tax
c. Both are same
d. None of the above
Ans - b
Solution :
Each purchase/sale transaction is matched on a First-In-First-Out basis.
All the units sold have been held for over one year, so long term capital gains tax
applies.
So here, out of the 5000 units sold, we have three separate pieces to be considered.
The First 2000 are matched to the first 2000 bought, appropriately indexed, gains
calculated and tax calculated.
Here you get two years of Indexation (2012-13 and 2014-15)
Indexed Purchase Price = 40,000 * (1024/852) = 48,075
Capital Gain = 100000 – 48075 = 51925
The non-indexed gain is Rs. (100000 - 40000) = Rs. 60000
Indexed Capital Gain: Rs. 51925
Non Indexed Capital Gain: Rs. 60000
The First 2000 are matched to the first 2000 bought, appropriately indexed, gains
calculated and tax calculated.
Here you get two years of Indexation (2013-14 and 2014-15)
Indexed Purchase Price = 60,000 * (1024/939) = 65431
Capital Gain = 100000 – 65431 = 34569
The non-indexed gain is Rs. (100000 - 60000) = Rs. 40000
Indexed Capital Gain: Rs. 34569
Non Indexed Capital Gain: Rs. 40000
The next 1000 units are sold at Rs. 50 and bought at Rs. 40, appropriately indexed,
gains calculated and tax calculated.
Here you get two years of Indexation (2013-14 and 2014-15)
Indexed Purchase Price = 40,000 * (1024/939) = 43620
Capital Gain = 50000 – 43620 = 6380
The non-indexed gain is Rs. (50000 - 40000) = Rs. 10000
Indexed Capital Gain: Rs. 6380
Non Indexed Capital Gain: Rs. 10000
So let’s add them all up.
Indexed
Total Capital Gain = 51925 + 34569 + 6380 = 92874
Capital Gains Tax Appl (%) = 20%
Capital Gains Tax = 18575
Non-Indexed
Total Capital Gain = 60000 + 40000 + 10000 = 110000
Capital Gains Tax Appl (%) = 10%
Capital Gains Tax = 11000
He should go ahead to choose the non-indexed option to save some tax of Rs. (18575 -
11000) = Rs. 7575/-.
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Case Studies on EMI
--------------------------
Mr. Naveen borrowed an amount of Rs. 50000 for 8 years @ 18% roi. What shall be
monthly payment?
Explanation :
Here,
P = 50000
R = 18% = 18 % ÷ 12 = 0.015 monthly
T = 8 yrs = 96 months
EMI = P * R * [(1+R)^T/(1+R)^T-1)]
EMI = 50000 * 0.015 * 1.01596 ÷ (1.01596 – 1)
= 986
.............................................
A person raised a house loan of Rs. 10 lac @ 12% roi repayable in 10 years. Calculate
EMI.
Explanation :
Here,
P = 1000000
R = 12% monthly = 0.01% p.a.
T = 10 Y = 120 months
EMI = P * R * [(1+R)^T/(1+R)^T-1)]
So,
EMI = 1000000*0.01*(1+0.01)^120 ÷ {(1+0.01)^120 – 1}
= 14347
.............................................
If the sanctioned loan amount is Rs. 100000 at 12% interest for 2 years, calculate the
EMI.
Solution :
EMI= P x r x (1 + r)^n / ((1+r)^n -1)
Here p = principal amount (loan taken)
r = interest rate per month (ex: if interest rate per annum is 10% then 10/(12*100))
n= tenure in months
EMI = 100000*0.01*(1+0.01)^24 /((1+0.01)^24 -1) = 4707
Where,
p = loan taken = 1,00,000
r = interest rate per month = 1% = 0.01
n = tenure in months = 2 Years = 24 months
.............................................
Ajit wants to receive Rs. 40000 p.a. for 20 years by investing @ 5%. How much he will
have to invest now?
Explanation :
Here,
P = 40000
R = 5% p.a.
T = 20 yrs
PV = P / R * [(1+R)^T - 1]/(1+R)^T
PV = (40000 ÷ 0.05) * {(1.0520 – 1) ÷ 1.0520}
= 498489
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Case Studies on Sinking Fund
------------------------------------
ABC company just issued 50 Lakhs Rs. 100-par bonds payable carrying 8% coupon rate
and maturing in 15 years. The bond indenture requires the company to set up a sinking
up to pay off the bond at the maturity date. Semi-annual payments are to be made to
the fund which is expected to earn 5% per annum. Find the amount of required periodic
contributions.
Solution
The future value required to be accumulated equals 50 Crores (50,00,000 × 100)
Since the payments are semi-annual, the periodic interest rate = 5% ÷ 2 = 2.5%
Number of periods = 2 × 15 = 30
Periodic Contribution to Sinking Fund
PMT(FV) = ( FV / (((1+i)^n - 1) / i) )
PMT = Payment per Time Period
FV = Future Value
i = Interest Rate per Time Period
n = Number of Time Periods
= (50,00,00,000 / (((1+0.025)^30 - 1) / 0.025)
= (50,00,00,000 / ((2.097567579 - 1) / 0.025)
= (50,00,00,000 / (1.097567579 / 0.025)
= (50,00,00,000 / 43.90270316)
= 1,13,88,820
So, ABC company must deposit Rs. 1,13,88,820 at the end of each 6 months for 15
years in order to accumulate enough money to pay off the bonds when they are due.
........................................................
A newly constructed building stands on a plot costing Rs. 100000.
The construction cost of building is Rs. 2000000 and the estimated life of building is 66
years.
The investor wants a 5% return on land cost and 8% return on the construction cost.
Calculate the annual rent to be charged if annual repairs cost 0.5% of cost of
construction and other outgoings equal 30% of gross rent.
The co-efficient for sinking fund at 3% for 66 years may be taken as 0.005.
Return on land cost = 5% of 100000 = 5000
Return on construction cost = 6% of 2000000 = 120000
Total Income desired = Rs. 125000 (a)
Let gross annual rental be 'r'
Outgoings:
Annual repairs = 0.5% of 2000000 = 10000
Other outgoings = 30% of r or 0.30 r
Amount towards sinking fund = 0.005 x 2000000 = 10000
Hence, net income = r - 0.30 r - 20000 (b)
Equating (a) and (b),
0.70r - 20000 = 125000
0.70r = 125000 - 20000
0.70r = 105000
r = 105000/0.70
= 12500
Hence, rent per month = Rs. 12500
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Find out the encumbrance factor and value of the usable FSI from following particulars
of the property :
Land area - 533 Sq Sq m
Total built-up area - 205 Sq m
Permissible FSI - 1
Rate of construction cost - Rs. 5000 per Sq m
Rate of land cost - Rs. 2000 per Sq m
Desired rate of return - 9%
Usable carpet area - 155 Sq m
Monthly Rent on carpet area basis - Rs. 50 per Sq m
Usual outgoings - 1/6 of yield
Solution
Cost of construction = 205 x 5000 = 1025000
Cost of FSI used = 205 x 2000 = 410000
Total cost = 1435000
Desired Yield @ 9% = 1435000 x 0.09 =129150
Estimated Yield = 50 x 155 x 12 = 93000
Usual outgoings = 1/6 of yield = 93000/6 = 15500
Net annual yield = 77500
Hence, encumbrance factor = 77500/93000 = 0.833
Usable FSI = 533 - 205 = 328 Sq m
Value of usable FSI = 328 x 0.833 x 2000 = 546448
.............................................
Suppose that during the rent of a property the owner earns the income of 60000 on a
quarterly basis.
Set the value of this liability at the current moment;
in other words, determine the price of this property, if it was sold at the present moment
at the interest rate:
1) of 8% converted on a quarterly basis?
2) of 8% converted on an annual basis?
We have that
1) R = 60000;
i = 0.02;
A = 60000 / 0.02
= 3000000:
Thus, the market value of this property is 3000000.
2) In the case we have a complex annuity,
thus: R = 60000, i = 0.08, c = 0.25 Then
p = 1.08^0.25 - 1 = 0.0194265
A = 60000/0.0194265 = 3088557
In this case the value of this property is 3088557.
.............................................
The device, the cost of which is 120000, must be replaced after six years.
It is known that after six years the used equipment could be sold for 20000.
Set the value of the property at the present moment (capitalize the costs) if the interest
rate is 10%, which is converted once a
year?
We have that OV = 120000, the replacement costs R = 120000 - 20000 = 100000,
In addition,
i = 0.15;
c = 1/(1/6) = 6 and
p = 1.1^6 - 1 = 0.7716
Then
K = 120000 + (100000/0.7716)
= 249607.4
CAIIB-RETAIL BANKING-LAST MINUTE REVISION
How to compute long & short-term capital gains (update yourselves with latest
changes)
There are various asset classes such as equity, debt, gold and real estate in which you
invest according to the time horizon of your financial goals and risk appetite. The gains
from these investments are termed as capital gains and are taxed differently.
Since any tax liability impacts your returns from the investment, it's important to have
awareness on the net gains you will receive.
The capital gains from the above-mentioned asset classes are classified as long-term or
short-term gains, based on the holding period of investment. For example, in real estate,
if you have held the asset for more than 3 years, it is treated as long term.
Contrary to this, in equities investment for more than a year is treated as long term.
Long-term capital gains are usually taxed at a lower rate than regular income, which is
done to encourage entrepreneurship and also investment in the economy.
Here are some calculations to show how long-term and short-term capital gains are
derived and how can they help you in reducing your taxability:
1. Long-Term Capital Gains: A long-term capital gain arises when you hold any asset
for a defined period. This period ranges from one year to three years across different
asset classes. The table in the attached file shows the holding period for long-term gains
in various asset classes and the applicable tax rate.
*Education Cess of 3% is applicable on all tax rates
As can be inferred from the data, equities enjoy zero taxability on long-term capital gains
while in real estate or physical gold investment you have to pay a flat rate. "Due to these
variations, the post-tax returns from these asset classes can vary substantially. There are
provisions in income tax to reduce long-term capital gains (LTCG) through indexation or
save LTCG tax by investing the gain in other alternatives,"
Thus, apart from reducing your tax liability through the indexation benefit, the tax on
long-term capital gains can also be saved by investing these gains in specified securities
for a certain period of time.
Indexation Benefit: Inflation constantly erodes the real value of money through the rise
in prices. Due to this even if your investments have risen four times during a particular
period, the purchasing power of money might have went down by, say, 50% from the
time of your investment. "To reduce the impact of inflation on your investment,
indexation benefit is provided in calculating long-term capital gains. Through this benefit
you can adjust your capital gains from inflation by applying an appropriate factor from
cost inflation index to the original units,"
Here is how indexation benefits works:
Cost of purchasing a property in April 2007 - Rs 35,00,000
Cost of selling the property in May 2011 - Rs 50,00,000
Inflation Index- 2007-2008 - 551
2011-2012 - 785
Indexed Purchase Cost - 35,00,000 x 785/551= Rs 49,86,388
Long Term Capital Gains = 50,00,000-49,86,388 = Rs 13612*
Tax on LTCG= 13612 x 20%= Rs 2722
Education Cess= 2722 x 3% = Rs 82
Total Tax on LTCG = Rs 2804
*The non-indexed gain would have been Rs 15 lakh
Thus, the indexation benefit reduces the tax liability substantially which otherwise would
have been a huge payout for any investor.
2. Short-Term Capital Gains: Investment in any asset class, if held for a very short
period, is taxed as short-term capital gains. Except equity, short-term gains from other
assets are included in the investor's income and are taxed as per the slab rate. The data
in the attached file highlights the taxation structure in case of short-term capital gains.
*Education cess of 3% is applicable on all tax rates
This is how short-term capital gains are calculated:
Cost of Equity Mutual Funds units bought in 2011 - Rs 100,000
Price of same units sold after 6 months - Rs 120,000
Short Term Capital Gains - Rs 20,000
Tax Applicable - 20,000 x 15%= Rs 3000
Education Cess - 3000 x 3%=Rs 90
Total Tax payable = Rs 3090
It is clear, thus, that with complex capital gains tax structure, it's wise to first make
yourself aware of the net returns, i.e. post-tax returns, you will earn, whenever you
intend to make any investment. This will help you in analyzing the amount of wealth you
will create after paying your tax liabilities.
CAIIB-RETAIL BANKING-LAST MINUTE REVISION-CASE STUDIES
Difference between Written Down Value Method (WDV) and Straight Line
Method (SLN)
In Written Down Value (WDV) method depreciation is charged on the reuced price.
Example: Asset purchased for Rs. 100.00: Depreciation rate 10%. First year its value will
be reduced to 90.00 (100-10% of 100) and in second year depreciation will be Rs. 9.00 i
e 10% of 90. Similarly third year it will be Rs. 8.10. This way the value of asset never
comes at Zero.
In Straight Line Method (SLN) life of a asset is known then for the duration of life, every
year an equal sum is taken as depreciation. Example Asset purchased for Rs. 100.00,
Life ascertained 8 years and then every year a sum of Rs. 12.50 is charged to
Depreciation and after 8th year its book value will be zero.
WDV method is strongly recommended.
In Written Down Value Method, the rate of depreciation is predetermined. This is done
by deducting the amount of depreciation charged before from the balance of cost of
asset (Cost of Asset-Estimated Scrap Value). In simple words, in the first year the
amount of depreciation charged is high and it gradually starts decreasing during the
subsequent years.
The main benefit of this method is that it recognises this fact that in the initial phase of
an asset, costs of maintenance, repairs etc. are less which goes on increasing with the
progressing life of the asset. Thus, by charging higher amount of depreciation in the
initial years and gradually decreasing the amount of depreciation counterbalance both
the lower amount of repairs and maintenance cost in the initial years and the gradual
increase later on. It can be noted here that the written down value can never be zero.
CAIIB-RETAIL BANKING-LAST MINUTE REVISION
Formula to Calculate the Periodic Payments under RML
----------------------------------------------------------------
The formula to calculate the periodic payments, as available in the website of NHB, is as
under:
Installment Amount = (PV*LTVR*I)/ ((1+I)n-1) Where,
PV = Property Value;
LTVR = LTV Ratio;
n = No. of Installment Payments;
I = the value of I will depend on Disbursement Frequency selected.
A Hypothetical Example
Value of the property Rs. 50,00,000 Rs 50,00,000
Loan Amount 80% 90%
Loan Tenor 15 years 15 years
Rate of interest 10% 10.50%
Monthly installment Rs. 9651. Rs 10,368
Quarterly installment Rs. 29,414. Rs 31,638
Yearly installment Rs. 1,25, 895 Rs 1,36,116
.............................................
Sinking Fund
----------------
The sinking fund factor is the amount that accumulates to Re. 1 if invested at specified
rate of interest for certain number of years.
It can be obtained from Valuation Tables.
The factor for redemption of Re 1 at the end of 25 years @ 5% compound interest is
0.021 from the table (see Appendix given in book).
Thus the sinking fund for redeeming original capital of Rs. 15 lacs will be 15,00,000 x
0.021 = 315000.
…………………………………………………………………………………………